VANISHING, NON-VANISHING AND IMBEDDING THEOREMS ON WEAKLY PSEUDOCONVEX COMPLEX SPACES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoellipticity and Vanishing Theorems

Let −iLT (essentially Lie derivative with respect to T , a smooth nowhere zero real vector field) and P be commuting differential operators, respectively of orders 1 and m ≥ 1, the latter formally normal, both acting on sections of a vector bundle over a closed manifold. It is shown that if P + (−iLT ) m is elliptic then the restriction of −iLT to D ⊂ kerP ⊂ L (D is carefully specified) yields ...

متن کامل

Vanishing Theorems on Covering Manifolds

Let M be an oriented even-dimensional Riemannian manifold on which a discrete group Γ of orientation-preserving isometries acts freely, so that the quotientX = M/Γ is compact. We prove a vanishing theorem for a half-kernel of a Γ-invariant Dirac operator on a Γ-equivariant Clifford module overM , twisted by a sufficiently large power of a Γ-equivariant line bundle, whose curvature is non-degene...

متن کامل

Vanishing theorems on Hermitian manifolds

We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with ddc-harmonic Kähler form and positive (1, 1)-part of the Ricci form of the Bismut connection. This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a coroll...

متن کامل

Quaternionic Dolbeault complex and vanishing theorems on hyperkähler manifolds

Let (M, I, J,K) be a hyperkähler manifold, dimH M = n, and L a non-trivial holomorphic line bundle on (M, I). Using the quaternionic Dolbeault complex, we prove the following vanishing theorem for holomorphic cohomology of L. If c1(L) lies in the closure K̂ of the dual Kähler cone, then H(L) = 0 for i > n. If c1(L) lies in the opposite cone −K̂, then H(L) = 0 for i < n. Finally, if c1(L) is neith...

متن کامل

Vanishing Theorems and String Backgrounds

We show various vanishing theorems for the cohomology groups of compact hermitian man-ifolds for which the Bismut connection has (restricted) holonomy contained in SU (n) and classify all such manifolds of dimension four. In this way we provide necessary conditions for the existence of such structures on hermitian manifolds. Then we apply our results to solutions of the string equations and sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 1995

ISSN: 1340-6116

DOI: 10.2206/kyushujm.49.243